aicarriere.nl

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Cannock
Marktconform
Medior
Rotterdam
Als Business Intelligence (BI) Developer bij Cannock vertaal je complexe data naar bruikbare informatie. Je ontwikkelt en onderhoudt BI-oplossingen binnen een cloud-based Power BI-platform en een modern datawarehouse, en leidt...
NN
4.547 - 6.496
Medior
Rotterdam
Als Data Scientist bij NN Pensioen werk je in het AI-kernteam aan AI-oplossingen zoals Generative AI en machine learning. Je vertaalt businessvraagstukken naar data-oplossingen en optimaliseert bedrijfsprocessen. Je werkt samen...
Bitvavo
Marktconform
Medior
Amsterdam
As a Senior Data Scientist at Bitvavo you'll drive insights and develop intelligent solutions across Compliance, Legal and Risk. Collaborate with teams to build predictive models, enhance data pipelines and...
Stater
4.586 - 5.733
Medior
Amersfoort
Als Data Consultant bij Stater speel je een cruciale rol in het omzetten van complexe data naar heldere inzichten. Je bouwt dashboards, werkt samen met IT en Business, en identificeert...